
1

Sorting الترتيب
 م.وجدان ياسيه data structure المحاضرة التاسعة

• Sorting is the process of arranging a group of items into a defined order based on particular

criteria, e.g. arranging Person information in ascending order of age.

Sorting algorithms are often classified by:

1-stability

2-time

3-space (consider memory usage).

4-adaptability

5-Computational complexity theory: (See Big O notation.)

ظشٌت تقٍس عذد انتبذٌلاث َعذدانمقاسواث فً كم دَسة َتعتمذ عهى ثلاث حالاث:ٌزي انى

1- worst ,

2- average ,

3- best behavior.

 in terms of the size of the list (n). For typical serial sorting algorithms good behavior is

O(n log n), with parallel sort in O(log
2
 n), and bad behavior is O(n

2
). Ideal behavior for a

serial sort is O(n).

• There are different types of the sorting algorithm such as:

 Bubble Sort, Selection Sort, Insertion Sort, Quick Sort and Merge Sort.

1-Bubble Sort:

• The bubble sort improves the performance by making more than one exchange during

 its pass.

• By making multiple exchanges, we will be able to move more elements toward their

 correct positions using the same number of comparisons as the selection sort makes.

• The key idea of the bubble sort is to make pair wise comparisons and exchange the

 positions of the pair if they are out of order.

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Worst-case_performance
https://en.wikipedia.org/wiki/Average_performance
https://en.wikipedia.org/wiki/Best-case_performance

2

Bubble sort Algorithm:

We assume list is an array of n elements. We further assume that swap function swaps the

values of the given array elements.

begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

 end if

 end for

 return list

end BubbleSort

3

Sorting using Bubble Sort program:

Let's consider an array with values {5, 1, 6, 2, 4, 3}

int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, temp;

for(i=0; i<6; i++)

{

 for(j=0; j<6-i-1; j++)

 {

 if(a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

}

Above is the algorithm, to sort an array using Bubble Sort. Although the above logic will sort

and unsorted array, still the above algorithm is not efficient because as per the above logic, the

for-loop will keep executing for six iterations even if the array gets sorted after the second

iteration.

Hence we can insert a flag and can keep checking whether swapping of elements is taking place

or not in the following iteration.

int a[6] = {5, 1, 6, 2, 4, 3};

int i, j, temp;

for(i=0; i<6; i++)

{

 int flag = 0; //taking a flag variable

 for(j=0; j<6-i-1; j++)

 {

 if(a[j] > a[j+1])

 {

 temp = a[j];

4

 a[j] = a[j+1];

 a[j+1] = temp;

 flag = 1; //setting flag as 1, if swapping occurs

 }

 }

for(i=0;i<6;i++)

 cout<<a[i]<<” “;

H.W:

1-write program to sort the following number by use bubble sort function: 8,6,4,2

2-suppose that bubble sort is applied to the following list of numbers, show what the list will

look after each phase in the sort: 73, 21, 15, 83, 66, 7, 19, 18

2-Selection sort:

ابذانً مع انعىصش الاَل)ارا كان انتشتٍب تصاعذي(َتكشاس ٌزي خُاسصمٍت الاختٍاس تعتمذ عهى اختٍاس اصغش عىصش َ

 انطشٌقً مع باقً انعىاصش , ٌَمكه تهخٍصٍا بانشكم انتانً:

5

Selection sorting algorithm:

void selectSort(int arr[], int n)

{

 int min,temp;

 for (int i=0; i < n-1; i++)

 {

 min = i;

 for (int j=i+1; j < n; j++)

 {

 if (arr[j] < arr[min])

 min=j;

 }

 if (min != i)

 {

 temp = arr[i];

 arr[i] = arr[min];

 arr[min] = temp;

 }

 }

}

6

Time Complexity of Selection Sort:

The time complexity of selection sort is O(n
2
), for best, average, and worst case scenarios.

Because of this selection sort is a very ineffecient sorting algorithm for large amounts of data, it's

sometimes preffered for very small amounts of data such as the example above. The complexity

is O(n
2
) for all cases because of the way selection sort is designed to traverse the data. The outer

loops first iteration has n comparisons (where n is the number of elements in the data) the second

iteration would have n-1 comparisons followed by n-2, n-3, n-4...thus resulting in O(n
2
) time

complexity.

3-Insertion sort:

Insertion sort is a faster and more improved sorting algorithm than selection sort

How Insertion Sort Works?

7

We take an unsorted array for our example.

3 9 6 1 2

Insertion sort algorithm:

void insertion_sort (int arr[], int length){

 int j, temp;

 for (int i = 0; i < length; i++){

 j = i;

 while (j > 0 && arr[j] < arr[j-1]){

 temp = arr[j];

 arr[j] = arr[j-1];

 arr[j-1] = temp;

 j--;

 }

 }

}

8

4-Quick sort :

Partition algorithm in detail

There are two indices i and j and at the very beginning of

the partition algorithm i points to the first element in the array and j points to the last

one. Then algorithm moves i forward, until an element with value greater or equal

to the pivot is found. Index j is moved backward, until an element with value lesser

or equal to the pivot is found. If i ≤ j then they are swapped and i steps to the next

position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes

greater than j.

After partition, all values before i-th element are less or equal than the pivot and all

values after j-th element are greater or equal to the pivot.

Example. Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.

9

Quick sort algorithm:

void quickSort(int arr[], int left, int right) {
 int i = left, j = right;
 int tmp;
 int pivot = arr[(left + right) / 2];

 /* partition */
 while (i <= j) {
 while (arr[i] < pivot)
 i++;
 while (arr[j] > pivot)
 j--;
 if (i <= j) {
 tmp = arr[i];
 arr[i] = arr[j];
 arr[j] = tmp;
 i++;
 j--;
 }
 }

10

 /* recursion */
 if (left < j)
 quickSort(arr, left, j);
 if (i < right)
 quickSort(arr, i, right);
}

5-Merge sort:

11

Example:

Merge sort algorithm:

#include <iostream>

void merge(int *, int *, int, int, int);

void mergesort(int *a, int *b, int low, int high)

{

 int pivot;

 if (low < high)

 {

 pivot = (low + high)/2;

 mergesort(a, b, low, pivot);

 mergesort(a, b, pivot + 1, high);

 merge(a, b, low, pivot, high);

 }

}
void merge(int *a, int *b, int low, int pivot, int high)

{

 int h, i, j, k;

 h = low;

 i = low;

12

 j = pivot + 1;

 while ((h <= pivot) && (j <= high)) // Traverse both halves of the array

 {

 if (a[h] <= a[j]) // if an element of left half is less than element of right half

 {

 b[i] = a[h]; // store element of left half in the temporary array

 h++; // shift the index of the array from which the element was copied to temporary

 }

 else // otherwise store the element of the right half in the temporary array

 {

 b[i] = a[j];

 j++; // shift the index of the array from which the element was copied to temporary

 }

 i++;

 }

 if (h > pivot) // If traversal of left half is done,

 // copy remaining elements from right half to temporary
{

 for (k = j; k <= high; k++)

 {

 b[i] = a[k];

 i++;

 }

 }

 else // otherwise copy remaining elements from left half to temporary

 {

 for (k = h; k <= pivot; k++)

 {

 b[i] = a[k];

 i++;

 }

 }

 for (k = low; k <= high; k++) a[k] = b[k]; // recopy the values from temporary to original array.

}

int main()

{

 int a[] = {12, 10, 43, 23, -78, 45, 123, 56, 98, 41, 90, 24};

 int num;

 num = sizeof(a)/sizeof(int);

 int b[num]; // temporary array to be used for merging

 mergesort(a, b, 0, num-1);

 for (int i = 0; i < num; i++)

 cout << a[i] << " ";

 cout << endl;

}

