Sorting <A

daulil) 3 pualaall data structure Ol A g.a

» Sorting is the process of arranging a group of items into a defined order based on particular
criteria, e.g. arranging Person information in ascending order of age.

Sorting algorithms are often classified by:

1-stability

2-time

3-space (consider memory usage).

4-adaptability

5-Computational complexity theory: (See Big O notation.)

QYBQ»\J‘;LMJBJ}J&&QDJ@\J&}Q%M\ e u.u.gsﬂa.)‘)u\ XYY

1- worst,

2- average,

3- best behavior.
in terms of the size of the list (n). For typical serial sorting algorithms good behavior is
O(n log n), with parallel sort in O(log? n), and bad behavior is O(n?). Ideal behavior for a
serial sort is O(n).

» There are different types of the sorting algorithm such as:
Bubble Sort, Selection Sort, Insertion Sort, Quick Sort and Merge Sort.

1-Bubble Sort:

* The bubble sort improves the performance by making more than one exchange during
its pass.

« By making multiple exchanges, we will be able to move more elements toward their
correct positions using the same number of comparisons as the selection sort makes.

* The key idea of the bubble sort is to make pair wise comparisons and exchange the
positions of the pair if they are out of order.


https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Worst-case_performance
https://en.wikipedia.org/wiki/Average_performance
https://en.wikipedia.org/wiki/Best-case_performance

Bubble Sort

o 1 2 3 4 5 o6 7 8
23 | 17| 5|90 |12 | 44 | 38 |84 |77 17 | 5 23|12 |44 |90 | 358 | 84 | 77
I_1 exchange exchange ‘—]
17 I 23| 590 |12 |44 [38 84 | 77 17 | 5§ 23112 |44 |38 |20 | 84 |77

| | exchange exchange T_T

- | [
175 [23]90 12 |44 |38 54| 7 [17|5‘23|12|44 33|34‘90‘?7|

xchang
T?TT_TE chansd exchange t_T
17 | 5 | 1312 |90 | 44 | 38 (84|77 17 |5 | 23|12 |44 |38 |84 |77 | 90
1—1 exchange The largest value 90 is at the end of the
list.
Bubble sort Algorithm:

We assume listis an array of n elements. We further assume that swap function swaps the
values of the given array elements.

begin BubbleSort(list)
for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if
end for
return list

end BubbleSort



Sorting using Bubble Sort program:
Let's consider an array with values {5, 1, 6, 2, 4, 3}
inta[6] ={5, 1, 6, 2, 4, 3};
inti, j, temp;
for(i=0; i<6; i++)
{
for(j=0; j<6-i-1; j++)
{
if(ali] > a[j+1])
{
temp = a[j];
afj] = afj+1];
a[j+1] = temp;
ks
¥
¥

Above is the algorithm, to sort an array using Bubble Sort. Although the above logic will sort
and unsorted array, still the above algorithm is not efficient because as per the above logic, the
for-loop will keep executing for six iterations even if the array gets sorted after the second
iteration.

Hence we can insert a flag and can keep checking whether swapping of elements is taking place
or not in the following iteration.

inta[6] ={5, 1, 6, 2, 4, 3};

inti, j, temp;
for(i=0; i<6; i++)
{

int flag = 0; /ltaking a flag variable
for(j=0; j<6-i-1; j++)
{
if(afj] > a[j+1])
{
temp = a[j];



afj] = a[j+1];
a[j+1] = temp;
flag = 1; /lsetting flag as 1, if swapping occurs
}
}
for(i=0;i<6;i++)

cout<<a[i]<<”

H.W:
1-write program to sort the following number by use bubble sort function: 8,6,4,2

2-suppose that bubble sort is applied to the following list of numbers, show what the list will
look after each phase in the sort: 73, 21, 15, 83, 66, 7, 19, 18

2-Selection sort:

sda ) S35 (acbial cag il S 1) J5Y) jeaiall ge allayl s juaic jraal HL) e el HURYI A )l A
A S Ll Ry, ualinll (L g 4

first nun
1. Find the smallest element in the 1 1
0

list. 1 2 3 4 5 4] 7 8

. ‘ 23] 17| 5 |90 |12 |44 |38 |84 |77
Exchange the element in the first

position and the smallest element. ‘mm]

Now the smallest element 1s in the

[ R

00

first position.
0 1 2 3 4 5 6 7 8

L)

Repeat Step 1 and 2 with the list :
‘ 1'."‘ 23‘90‘]2|44‘33‘84‘??|

n

having one less element (1.e.. the

smallest element 1s discarded from "
sorted unsorted

further processing).
- This 1s the result of one pass.



0 1 2 3 4 5 7 8
1 S0 17, 23[90 |12 | 44 77
I
sorted
2 S| 12, 23|00 |17 | 44 77
L ]
3 3 12, 17|90 |23 | 44 77
1
L 2 1 ]
7 5 12 17|23 |38 | 44 00
I
8 3 12 17|23 |38 | 44 90

Selection sorting algorithm:

Result AFTER one
pass 1s completed.




Time Complexity of Selection Sort:

The time complexity of selection sort is O(n?), for best, average, and worst case scenarios.
Because of this selection sort is a very ineffecient sorting algorithm for large amounts of data, it's
sometimes preffered for very small amounts of data such as the example above. The complexity
is O(n?) for all cases because of the way selection sort is designed to traverse the data. The outer
loops first iteration has n comparisons (where n is the number of elements in the data) the second
iteration would have n-1 comparisons followed by n-2, n-3, n-4...thus resulting in O(n?) time
complexity.

3-Insertion sort:

Insertion sort is a faster and more improved sorting algorithm than selection sort

How Insertion Sort Works?

+ Insertion sort orders a list of values by repetitively inserting a particular

value into a sorted subset of the list
»  More specifically:
— consider the first item to be a sorted sublist of length 1

— insert the second item into the sorted sublist, shifting the first item 1f

needed

— 1nsert the third item into the sorted sublist. shifting the other items as

needed

— repeat until all values have been inserted into their proper positions



We take an unsorted array for our example.

3 9 6 1 2

3 9 6 1 2
3 is sorted.
Shift nothing. Insert 9. L]

3 9 —» g 1 2
3 and 9 are sorted.
Shift 9 to the right. Insert 6. +

3—P» 6—>» 9—>r 1 2
3, 6, and 9 are sorted. |
Shift 9, 6, and 3 to the right. Insert 1. *

1 3 » 6 > 9 » 2
1, 3, 6, and 9 are sorted. |
Shift 9, 6, and 3 to the right. Insert 2. 4

Insertion sort algorithm:




4-Quick sort :

*  Quick sort orders a list of values by partitioning the list around one element.
then sorting each partition
*  More specifically:
— choose one element 1n the list to be the partition element
— orgamze the elements so that all elements less than the partition element
are to the left and all greater are to the right
— apply the quick sort algorithm (recursively) to both partitions
* The choice of the partition element 1s arbitrary

+ For efficiency, it would be nice 1f the partition element divided the list roughly

in half

Partition algorithm in detail

There are two indicesiandjand at the very beginning  of
the partition algorithm i points to the first element in the array and j points to the last
one. Then algorithm moves i forward, until an element with value greater or equal
to the pivot is found. Index j is moved backward, until an element with value lesser
or equal to the pivot is found. If i < j then they are swapped and i steps to the next
position (i + 1), j steps to the previous one (j - 1). Algorithm stops, when i becomes
greater than j.

After partition, all values before i-th element are less or equal than the pivot and all
values after j-th element are greater or equal to the pivot.

Example. Sort {1, 12, 5, 26, 7, 14, 3, 7, 2} using quicksort.



7 pivot value = 7

] ! f

pivot value i

1112 2 12z7=22 swap 12and 2

111215 (|26 71112 26=7=z7,swap26and 7

TH211917 (|7 31126] |12 fz7=z3 swap/and3

112115713 |]114]]|7|]|26[|12 i > |, stop partition

1125|713 14 7 26 12 run quick sort recursively

Quick sort algorithm:

void quickSort (int arr[], int left, int right) {
int i = left, j = right;
int tmp;
int pivot = arr[(left + right) / 21;

/* partition */
while (i <= 3j) {
while (arr[i] < pivot)

i++;

while (arr[j] > pivot)
j-=z

if (1 <= 3) {
tmp = arr[i];
arr([i] = arrljl;
arr[j] = tmp;
i++;
-



/* recursion */
if (left < 3J)

quickSort (arr, left, 7j);
if (i < right)

quickSort (arr, i, right);

5-Merqe sort:

*  Merge sort orders a list of values by recursively dividing the list in half

until each sub-list has one element. then recombining
*  More specifically:
— divide the list into two roughly equal parts

— recursively divide each part in half, continuing until a part contains

only one element
— merge the two parts into one sorted list

— continue to merge parts as the recursion unfolds

10



Example:

Merge sort algorithm:

#include <iostream>

void merge(int *, int *, int, int, int);
void mergesort(int *a, int *b, int low, int high)

t
int pivot;
i (low < high)

pivot = (low + high)/2;

mergesort(a, b, low, pivot);
mergesort(a, b, pivot + 1, high);

merge(a, b, low, pivot, high);

¥
¥

void merge(int *a, int *b, int low, int pivot, int high)

{
inth, i, j, k;
h = low;
i=low;

11

38|27 |43 3|9 (82|10
i
38 (27|43 | 3 918210
l l
38|27 43| 3 9|82 10
/ N
38 27 43 3 8 B2 10
\/ R
27138 3143 9|82 10
; :
3127 (38 |43 9110 |82
s
3|9|10|27 |38 |43 |82




j =pivot + 1;
while ((h <= pivot) && (j <= high)) // Traverse both halves of the array
{
if (a[h] <= a[j]) // if an element of left half is less than element of right half

b[i] = a[h]; // store element of left half in the temporary array
h++; // shift the index of the array from which the element was copied to temporary

else // otherwise store the element of the right half in the temporary array

t

b[i] = a[jl;

j++; /I shift the index of the array from which the element was copied to temporary
}
i++;

if (h > pivot) // If traversal of left half is done,
/I copy remaining elements from right half to temporary

for (k = j; k <= high; k++)
b[i] = a[kI;
i++;
}
}
else // otherwise copy remaining elements from left half to temporary
for (k = h; k <= pivot; k++)
b[i] = a[k];
i++;

}

for (k = low; k <= high; k++) a[k] = b[K]; // recopy the values from temporary to original array.

}
int main()

int a[] = {12, 10, 43, 23, -78, 45, 123, 56, 98, 41, 90, 24};
int num;

num = sizeof(a)/sizeof(int);

int b[num]; // temporary array to be used for merging
mergesort(a, b, 0, num-1);

for (inti=0; i < num; i++)

cout << gfi] <<"";
cout << endl;

12



